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Temperature fluctuation properties in sodium convection
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Experimental investigations have been carried out on some aspects of temperature field in sodium convec-
tion. Using spectra, histograms, and structure functions the properties of the temperature fluctuations were
analyzed. It was found that, at R& X 10°, the maximum Rayleigh number reached in this experiment, the
temperature field behavior was mainly diffusive. The frequency spectra showed a very clear scaling with a
slope of—4. It was also found that, over the whole range of Rayleigh numbers checked, the probability density
functions(PDF’s) of the temperature fluctuations were Gaussian shaped, whereas the PDF’s of the temperature
differences were well fitted by stretched exponential t4#3.063-651X97)51009-9

PACS numbds): 47.27.Te

Rayleigh-Baard convection, a fluid layer heated from be- The mean working temperature was 57Q1K] and the Ray-
low and cooled from above, has been studied for a long timeeigh number ranged from>210° to 5x 1.
The majority of this work has been devoted to the large The measurements presented in the present paper were
Prandtl number fluids in different geometries. A few num-obtained from two rake probes near the center as shown in
bers of studies have dealt with the low Prandtl number flowFig. 1. Each rake consisted of nine thermocouples spanning
([1-3)). While earlier studies focused on the global heatfrom the bottom to the top plate as shown in Figh)1 We
transfer and flow patterns, more recent interest arised in thehall focus on the results at 15 mm from the top plate, as the
statistical properties of turbulendg4]). A new regime of ~Presence of the mean flow allows us to relate the time dq—
turbulence, corresponding to the Bolgiano-Obukhov scalingM@in to the spatial one by means of the Taylor hypothesis
seems to occur at moderate Prandt! nurre§]. By con- (for further details on the flow pattern inside the cell as well

trast, experiments in mercufs] suggest that temperature as on the heat flux measurements, e Furthermore, the

- : ata presented here were obtained using<al8 data set
fluctuations are passively transported by turbulence at Iovgampled at 10 Hz, which corresponds to 100 times the tum

Prandtl number, in agreement with theoretical expectations :
7] over time(see below.
: L . . . The study of the shape of the probability density functions
Thus, the main aim of this Paper 15 to characterize th PDF’s) is related to the problem of intermittency, which is a
moderate Raylelgr_13number regime at a very low Prandty jamental problem in turbulendeee Ching11] for ap-
number (P=5x10"%) [8]. In order to do this, the properties pjication to the Rayleigh-Beard convection In fact, inter-
of the turbulence regime have been characterized by meapsittency in space and time is responsible for the deviation
of various statistical quantities such as histograms, frequencyom the Gaussian statistics.
power spectra and structure functions of local temperature |n Fig. 2(a) we show a temperature fluctuation time series
fluctuations. In this paper, we will study the temperature fieldand the corresponding PDF atRa.5x 10° [12], taken at a
for different Rayleigh numbers at different locations insidedistanceH/8 from the top plate, corresponding o\ ,= 1
the cell.

The experimental setup has been detailed in Horahgi. (@) (b)
[9] (see alsdl]). Here, we give only the main features. The |
experimental cell was a vertical cylinder 110 mm high and T A e e s
520 mm in diameter, corresponding to the aspect ratio // | N,
I=D/H=4.72. I —
The control parameter of this experiment was the heatinc / . N
power. Thus, the experimental boundary conditions were | RAKE=1 | | |n ;
. . -l o RN (e N — — Y T §
fixed heat flux at the bottom and fixed temperature at the top * NG :4[ 1 N
: |
} 55 71; — (R e — " §
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FIG. 2. (a) Typical time recording of the temperature fluctua- ~ FIG. 4. Frequency spectrum of temperature fluctuations at
tions normalized by the root-mean-squatkd and (c) the corre-  Ra=1.5x10° andh=95 mm(a) Log-log plot; (b) log-lin plot. The
sponding PDFP(6) with 6=(T—(T))/A. at H/8 from the top  two vertical dashed lines correspond to the fit region.
boundary for Ra 1.5x 1°. The dashed line iric) represents the
Gaussian distributiontb) Time derivative andd) the correspond- s very close to the Gaussian distribution, verifying that tur-
ing ~PDF at the same Rayleigh —number, wherepylence has not fully developed. On the other hand, the
0'=(aT/at)/({(aT/at))~'~ The dashed lines ifd) represent the fit ppps of temperature differences is well fited by a
by a stretched-exponential tiles, wifh=1 for |9]>2 (see text stretched-exponential forfii1]

[12]. In order to calculate the time derivativd/dt from the
digitalized temperature fluctuatios we estimate the time
derivative using a centered differencs]

p(0)=p(0)e 9’ ¢ p>0.

Note that =2 corresponds to Gaussian distribution and
(Tior=Ti_ 1) B=1 corresponds to exponential distribution, whie<1
S N et indicates a flatter intermittent distribution.
2 ’ At that location these PDF's are symmetric, the corre-
sponding skewness factdis4] S andS' respectively, for the
and divide by the sampling time steyt=0.1 sec[see Fig. flyctuations and its derivatives areS=0.055 and
2(b)]. ) _ S'=-0.079. Figure 3 shows the skewness fac®endS'

The normalized PDF of the temperature fluctuations ands functions of the cell’s height. Similar results have been
of its derivatives are shown in Figs(2 and 2d), respec-  gptained by Belmonte and Libchabgt3] but at moderate
tively. The dashed line represents the Gaussian distributioprandtl number and larger Rayleigh number.
with the same mean standard deviation as the turbulent sig- The spectra of temperature fluctuations provide a further
nal [Fig. 2(c)]. As can be seen from Fig(@, the histogram  test for the characterization of the turbulent regime. As em-

phasized by Chasnat al.[15], there are few published con-
(a) tributions that bear directly on the problem of the tempera-

dT;

1'?_ ture field behavior in turbulent fluid at low Prandtl number.
o5k ] Also, given the variety of theoretically published law=.,
m '0 . * exponential,—17/3, — 13/3, and— 3), the problem of scal-
-0.5F * * 4
a0 ] @ ()
x 35 %
-15 M e e T = Ao DN T~ Pt 7
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-0.5F x * : Log,o1/L Log,o R,
~1F E
-15 ' . : : - , . : s : FIG. 5. Log-log plot ofRs vsr/L at Ra=1.6x10°. The symbols
0 10 20 30 40 50 60 70 8 90 100 110 . ) . .
h [mm] are+,s=1,; O, s=2; X, s=3; %, s=4. Curves have been verti-
cally shifted by+5 (s=1), +5 (s=1), +2.5 (s=2), 0 (s=3),
FIG. 3. Skewness of the temperature fluctuatigasand its  —2.5 (s=4). The vertical dashed lines represent the fit range of the

derivatives(b) at Ra=1.6x 10° versus height. The circle-star point scaling exponents given in Tablédee text (b) Log-log plot of R,
corresponds to the location of the results shown in this paper.  vsR;.
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TABLE I. Scaling exponent for the temperature structure func- Ry(r) =<|T(X+ r)—T(x)|S>=(| 5-|-(r)|s>_
tions Rg wheres is the order.

Figure 5a) showsR, versusr for s=1,2,3,4 correspond-
ing to the turbulent signal given in Fig. 2. We should stress
& 0.86 1.67 2.42 3.09 3.70 4.26 the excellent agreement between the estimation of the mean
e +001 +003 =*004 =+005 =+008 =009 Velocityand the fact that the structure functions become flat
for r/lL=1, as commonly observed in ordinary turbulence.
%€ represent the error bars. The best fit ofR; over the range indicated by the vertical

dashed lines of Fig.(®) gives the scaling exponents reported
ing behavior in the conductive subrange still awaits an anin Table I.
swer. It is well known{ 16] that for Prandtl numbers less than A more effective way of studying the turbulence regime is
1 the temperature fluctuations spectra in the conductiverovided by the extended self-similarifgSS introduced by
range for a passive scalar are given by the relatiorBenziet al.in 1993[18]. As pointed out by Benzét al, if
Sr(k)~Sy(k)k™*, whereS, is the velocity spectrum. we suppose that the temperature structure functions of order

Using the mean velocitycomputed from the correlation s follow a scaling law of this kind,
between two probe&ee[4] and[9]) we can relate the time
domain with the spatial one. The mean velocity measured at Ro(r)~r*s,

Ra=1.5x 10° was V=2.5 cm/sec. Figure 4 shows the fre-

quency power spectrum for Rel.5x 10° at 15 mm from the  the s-order structure function versus theorder structure
top plate. The log-lin plot of Fig. @) shows clearly that the function has to follow the following scaling:

spectrum can best be fitted by a power law than by an expo-

nential one. In fact, the log-log pldsee Fig. 4b)] is well Rs

fitted with a power exponent equal fp=—3.96. The latter = ~rAeh,

ranges from 0.24 HZcorresponding to the integral scale t
L=V/f,) to 2.0 Hz. where

This means that at this Rayleigh number, neither the so-
called inertial-convective subrangeharacterized by &3
spectrum nor (for largerk) the so-called inertial-conductive A(st)= %
subranggcharacterized by a Batchelor spectrumritk =73 &

[17]) were observed. Thus, there is a range of wave numbers

(read frequencyk for which the velocity spectrum ison-  is the so-callecgself-exponentor the temperature field.
stantwhile fluctuations for the temperature field are in their ESS supports previous conclusions inferred from the fre-
conductiverange. The reason for this could be found in thequency spectra. In fact, Fig. 5 shows that as the self-
fact that as the Reynolds number was not high enough texponentA(2,1) is equal to—1.98, the temperature field is
develop any “inertial” subrange, the temperature spectrunfully conductive [remember that in the dissipative range,
fell off before the viscous cut-off could occur. A(s,t)=s/t].

Furthermore, the spectra at 1.5 cm as well as in the In this paper some properties of the temperature structure
middle of the cell were perfectly superimposable. Thisfield have been investigated experimentally. The results of
means that at this Rayleigh number the whole layer of sothe present investigation have demonstrated that the tempera-
dium was dominated by diffusive effects. It is of interest toture field at these Rayleigh numbers in sodium liquid was
examine whether this dissipative scaling can be observepurely dissipative: the Gaussian distribution of the PDF

s=1 s=2 s=3 s=4 s=5 s=6

even from the structure functions. proves this. Furthermore, a regime characterized Hy &
The structure functioRg, of orders, is defined by the scaling law in the temperature fluctuation spectra has been
following relationship: observed experimentally.
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